Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 58

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

JAEA Reports

User's manual and analysis methodology of probabilistic fracture mechanics analysis code PASCAL Ver.5 for reactor pressure vessels

Takamizawa, Hisashi; Lu, K.; Katsuyama, Jinya; Masaki, Koichi*; Miyamoto, Yuhei*; Li, Y.

JAEA-Data/Code 2022-006, 221 Pages, 2023/02

JAEA-Data-Code-2022-006.pdf:4.79MB

As a part of the structural integrity assessment research for aging light water reactor (LWR) components, a probabilistic fracture mechanics (PFM) analysis code PASCAL (PFM Analysis of Structural Components in Aging LWR) has been developed in Japan Atomic Energy Agency. The PASCAL code can evaluate failure probabilities and failure frequencies of core region in reactor pressure vessel (RPV) under transients by considering the uncertainties of influential parameters. The continuous development of the code aims to improve the reliability by introducing the analysis methodologies and functions base on the state-of-the-art knowledge in fracture mechanics and domestic data. In the first version of PASCAL, which was released in FY2000, the basic framework was developed for analyzing failure probabilities considering pressurized thermal shock events for RPVs in pressurized water reactors (PWRs). In PASCAL Ver. 2 released in FY 2006, analysis functions including the evaluation methods for embedded cracks and crack detection probability models for inspection were introduced. In PASCAL Ver. 3 released in FY 2010, functions considering weld-overlay cladding on the inner surface of RPV were introduced. In PASCAL Ver. 4 released in FY 2017, we improved several functions such as the stress intensity factor solutions, probabilistic fracture toughness evaluation models, and confidence level evaluation function by considering epistemic and aleatory uncertainties related to influential parameters. In addition, the probabilistic calculation method was also improved to speed up the failure probability calculations. To strengthen the practical applications of PFM methodology in Japan, PASCAL code has been improved since FY 2018 to enable PFM analyses of RPVs subjected to a broad range of transients corresponding to both PWRs and boiling water reactors, including pressurized thermal shock, low-temperature over pressure, and normal operational transients. In particular, the stress intensi

Journal Articles

Development of seismic safety assessment method for piping in long-term operated nuclear power plant

Yamaguchi, Yoshihito; Li, Y.

Haikan Gijutsu, 63(12), p.22 - 27, 2021/10

no abstracts in English

Journal Articles

Development of guideline on seismic fragility evaluation for aged piping

Yamaguchi, Yoshihito; Katsuyama, Jinya; Masaki, Koichi*; Li, Y.

Proceedings of ASME 2021 Pressure Vessels and Piping Conference (PVP 2021) (Internet), 9 Pages, 2021/07

The seismic probabilistic risk assessment is an important methodology to evaluate the seismic safety of nuclear power plants. In this assessment, the core damage frequency is evaluated from the seismic hazard, seismic fragilities, and accident sequence. Regarding the seismic fragility evaluation, the probabilistic fracture mechanics can be applied as a useful evaluation technique for aged piping systems with crack or wall thinning due to the age-related degradation mechanisms. In this study, to advance seismic probabilistic risk assessment methodology of nuclear power plants that have been in operation for a long time, a guideline on the seismic fragility evaluation of the typical aged piping systems of nuclear power plants has been developed considering the age-related degradation mechanisms. This paper provides an outline of the guideline and several examples of seismic fragility evaluation based on the guideline and utilizing the probabilistic fracture mechanics analysis code.

JAEA Reports

Guideline on seismic fragility evaluation for aged piping (Contract research)

Yamaguchi, Yoshihito; Katsuyama, Jinya; Masaki, Koichi*; Li, Y.

JAEA-Research 2020-017, 80 Pages, 2021/02

JAEA-Research-2020-017.pdf:3.5MB

The seismic probabilistic risk assessment (seismic PRA) is an important methodology to evaluate the seismic safety of nuclear power plants. Regarding seismic fragility evaluations performed in the seismic PRA, the Probabilistic Fracture Mechanics (PFM) can be applied as a useful evaluation technique for aged piping with crack or wall thinning due to the age-related degradation. Here, to advance seismic PRA methodology for the long-term operated nuclear power plants, a guideline for the fragility evaluation on the typical aged piping of nuclear power plants has been developed taking the aged-related degradation into account.

JAEA Reports

User's manual and analysis methodology of probabilistic fracture mechanics analysis code PASCAL-SP Ver. 2 for piping (Contract research)

Yamaguchi, Yoshihito; Mano, Akihiro; Katsuyama, Jinya; Masaki, Koichi*; Miyamoto, Yuhei*; Li, Y.

JAEA-Data/Code 2020-021, 176 Pages, 2021/02

JAEA-Data-Code-2020-021.pdf:5.26MB

In Japan Atomic Energy Agency, as a part of researches on the structural integrity assessment and seismic safety assessment of aged components in nuclear power plants, a probabilistic fracture mechanics (PFM) analysis code PASCAL-SP (PFM Analysis of Structural Components in Aging LWR - Stress Corrosion Cracking at Welded Joints of Piping) has been developed to evaluate failure probability of piping. The initial version was released in 2010, and after that, the evaluation targets have been expanded and analysis functions have been improved based on the state-of-the art technology. Now, it is released as Ver. 2.0. In the latest version, primary water stress corrosion cracking in the environment of Pressurized Water Reactor, nickel based alloy stress corrosion cracking in the environment of Boiling Water Reactor, and thermal embrittlement can be taken into account as target age-related degradation. Also, many analysis functions have been improved such as incorporations of the latest stress intensity factor solutions and uncertainty evaluation model of weld residual stress. Moreover, seismic fragility evaluation function has been developed by introducing evaluation methods including crack growth analysis model considering excessive cyclic loading due to large earthquake. Furthermore, confidence level evaluation function has been incorporated by considering the epistemic and aleatory uncertainties related to influence parameters in the probabilistic evaluation. This report provides the user's manual and analysis methodology of PASCAL-SP Ver. 2.0.

JAEA Reports

Activities of Working Group on Verification of PASCAL; Fiscal years 2016 and 2017

Li, Y.; Hirota, Takatoshi*; Itabashi, Yu*; Yamamoto, Masato*; Kanto, Yasuhiro*; Suzuki, Masahide*; Miyamoto, Yuhei*

JAEA-Review 2020-011, 130 Pages, 2020/09

JAEA-Review-2020-011.pdf:9.31MB

For the improvement of the structural integrity assessment methodology on reactor pressure vessels (RPVs), the probabilistic fracture mechanics (PFM) analysis code PASCAL has been developed and improved in Japan Atomic Energy Agency based on the latest knowledge. The PASCAL code evaluates the failure probabilities and frequencies of Japanese RPVs under transient events such as pressure thermal shock considering neutron irradiation embrittlement. In order to confirm the reliability of the PASCAL as a domestic standard code and to promote the application of PFM on the domestic structural integrity assessments of RPVs, it is important to perform verification activities, and summarize the verification processes and results as a document. On the basis of these backgrounds, we established a working group, composed of experts on this field besides the developers, on the verification of the PASCAL module and the source program of PASCAL was released to the members of working group. This report summarizes the activities of the working group on the verification of PASCAL in FY2016 and FY2017.

Journal Articles

Improved Bayesian update method on flaw distributions reflecting non-destructive inspection result

Katsuyama, Jinya; Miyamoto, Yuhei*; Lu, K.; Mano, Akihiro; Li, Y.

Proceedings of ASME 2020 Pressure Vessels and Piping Conference (PVP 2020) (Internet), 8 Pages, 2020/08

We have developed a probabilistic fracture mechanics (PFM) analysis code PASCAL4 for evaluating failure frequency of reactor pressure vessels (RPVs). It is known that flaw distributions have an important role in failure frequency calculation in PFM analysis. Previously, we proposed likelihood function to obtain more realistic flaw distributions applicable for both case when flaws are detected and when there is no flaw indication as the inspection results based on Bayesian update methodology. Here, it can be applied to independently obtain posterior distributions of flaw depth and density. In this study, we improve the likelihood function to enable them to update flaw depth and density simultaneously. Based on the improved likelihood function, an example is presented in which flaw distributions are estimated by reflecting NDI results through Bayesian update and PFM analysis. The results indicate that the improved likelihood functions are useful for estimating flaw distributions.

Journal Articles

Improvement of probabilistic fracture mechanics analysis code PASCAL-SP with regard to PWSCC

Mano, Akihiro; Yamaguchi, Yoshihito; Katsuyama, Jinya; Li, Y.

Journal of Nuclear Engineering and Radiation Science, 5(3), p.031505_1 - 031505_8, 2019/07

Probabilistic fracture mechanics (PFM) analysis is expected as a rational method for the structural integrity assessment because it can consider the uncertainties of various influence factors and can evaluate the quantitative value such as failure probability of a cracked component as the solution. In the Japan Atomic Energy Agency, a PFM analysis code PASCAL-SP has been developed for the structural integrity assessment of piping welds in nuclear power plants. In the latest few decades, a number of cracks due to primary water stress corrosion cracking (PWSCC) have been detected in the nickel-based alloy welds in the primary piping of pressurized water reactors (PWRs). Thus the structural integrity assessment taking account of PWSCC has become important. In this paper, we improved PASCAL-SP for the assessment considering PWSCC by introducing the several analytical functions such as the evaluation models of crack initiation time, crack growth rate and probability of crack detection. By using improved PASCAL-SP, the failure probabilities of pipes with a circumferential crack or an axial crack due to PWSCC were evaluated as numerical examples. We also evaluated the influence of a leak detection and a non-destructive examination on the failure probabilities. On the basis of the numerical results, we concluded that the improved PASCAL-SP is useful for evaluating the failure probability of pipe taking PWSCC into account.

Journal Articles

Improvement of penetrate crack length evaluation method for LBB assessment of sodium-cooled fast reactor components

Wakai, Takashi; Machida, Hideo*; Arakawa, Manabu*

Nihon Kikai Gakkai 2018-Nendo Nenji Taikai Koen Rombunshu (DVD-ROM), 5 Pages, 2018/09

According to the fitness for service code of Sodium-Cooled fast Reactor (SFR), the volumetric tests as in-service inspection can be replaced with continuous leak monitoring, where the Leak Before Break (LBB) is demonstrated, because the primary stress caused by internal pressure is not significant in SFR components. Basically, if the detectable crack length and the penetrated crack length are sufficiently smaller than the unstable critical crack length, it can be concluded that LBB is successfully demonstrated. The authors had already proposed a simplified method to calculate the penetrated crack length both of the circumferential and axial cracks in the pipe as a function of pipe geometry, fatigue crack growth characteristics and loading conditions. However, some problems in the method have been pointed out in the process of the reviewing by the JSME code committee. This study describes an improved method to calculate the penetrated crack length.

JAEA Reports

User's manual and analysis methodology of probabilistic fracture mechanics analysis code PASCAL Ver.4 for reactor pressure vessel (Contract research)

Katsuyama, Jinya; Masaki, Koichi; Miyamoto, Yuhei*; Li, Y.

JAEA-Data/Code 2017-015, 229 Pages, 2018/03

JAEA-Data-Code-2017-015.pdf:5.8MB
JAEA-Data-Code-2017-015(errata).pdf:0.15MB

As a part of the structural integrity research for aging light water reactor components, a probabilistic fracture mechanics (PFM) analysis code PASCAL has been developed in JAEA. The PASCAL code can evaluate the conditional failure probabilities and failure frequencies for core region in reactor pressure vessels under the pressurized thermal shock events. In this study, we improved many functions such as the stress intensity factor solutions, the fracture toughness models, or confidence level evaluation function by considering epistemic and aleatory uncertainties related to influence parameters in the structural integrity assessment. We also developed the analysis module PASCAL-Manager which calculates the failure frequency for the entire core region taking into consideration the failure probabilities obtained from PACAL-RV. Based on these improvements, the new analysis code is upgraded to PASCAL Ver.4. This report provides the user's manual and theoretical background of PASCAL Ver.4.

Journal Articles

Verification methodology and results of probabilistic fracture mechanics code PASCAL

Masaki, Koichi; Miyamoto, Yuhei*; Osakabe, Kazuya*; Uno, Shumpei*; Katsuyama, Jinya; Li, Y.

Proceedings of 2017 ASME Pressure Vessels and Piping Conference (PVP 2017) (CD-ROM), 7 Pages, 2017/07

A probabilistic fracture mechanics (PFM) analysis code PASCAL has been developed by Japan Atomic Energy Agency (JAEA). PASCAL can evaluate failure frequencies of Japanese reactor pressure vessels (RPVs) during pressurized thermal shock (PTS) events based on domestic structural integrity assessment models and data of influence factors. In order to improve the engineering applicability of PFM to Japanese RPVs, we have performed verification of the PASCAL. In general, PFM code consists of many functions such as fracture mechanics evaluation functions, probabilistic evaluation functions including random variables sampling modules and probabilistic evaluation models, and so on. The verification of PFM code is basically difficult because it is impossible to confirm such functions through the comparison with experiments. When a PFM code is applied for evaluating failure frequencies of RPVs, verification methodology of the code should be clarified and it is important that verification results including the region and process of the verification of the code are indicated. In this paper, our activities of verification for PASCAL are presented. We firstly represent the overview and methodology of verification of PFM code, and then, some verification examples are provided. Through the verification activities, the applicability of PASCAL in structural integrity assessments for Japanese RPVs was confirmed with great confidence.

Journal Articles

Improvement of probabilistic fracture mechanics analysis code PASCAL-SP with regard to primary water stress corrosion cracking

Mano, Akihiro; Yamaguchi, Yoshihito; Katsuyama, Jinya; Li, Y.

Proceedings of 25th International Conference on Nuclear Engineering (ICONE-25) (CD-ROM), 7 Pages, 2017/07

Recently, cracks due to primary water stress corrosion cracking (PWSCC) have been detected in nickel based alloy welds in the primary piping of pressurized water reactors. Structural integrity assessments taking PWSCC into account have become important. Probabilistic fracture mechanics (PFM) is expected as one of rational methods for the assessments because it can account for uncertainty of the influencing factors and evaluate the failure probabilities of components. In JAEA, a PFM analysis code PASCAL-SP was developed to evaluate the failure probability of nuclear pipe. This paper details improvement of the PASCAL-SP to evaluate the failure probability taking PWSCC into account. As numerical examples, the failure probabilities for circumferential and axial cracks due to PWSCC are evaluated. Influence of inspection on failure probabilities are evaluated. As the results, we conclude that the improved PASCAL-SP is useful for evaluating the failure probability taking PWSCC into account.

JAEA Reports

Activities of Working Group on Verification of PASCAL; Fiscal year 2015

Li, Y.; Hayashi, Shotaro*; Itabashi, Yu*; Nagai, Masaki*; Kanto, Yasuhiro*; Suzuki, Masahide*; Masaki, Koichi*

JAEA-Review 2017-005, 80 Pages, 2017/03

JAEA-Review-2017-005.pdf:16.85MB

For the improvement of the structural integrity assessment methodology on reactor pressure vessels (RPVs), the probabilistic fracture mechanics (PFM) analysis code PASCAL has been developed and improved in JAEA based on latest knowledge. The PASCAL code evaluates the failure probabilities and frequencies of Japanese RPVs under transient events such as pressurized thermal shock considering neutron irradiation embrittlement. In order to confirm the reliability of the PASCAL as a domestic standard code and to promote the application of PFM on the domestic structural integrity assessments of RPVs, it is important to verify the probabilistic variables, functions and models incorporated in the PASCAL and summarize the verification processes and results as a document. On the basis of these backgrounds, we established a working group, composed of experts on this field besides the developers, on the verification of the PASCAL3 which is a PFM analysis module of PASCAL, and the source program of PASCAL3 was released to the members of working group. Through one year activities, the applicability of PASCAL in structural integrity assessments of domestic RPVs was confirmed with great confidence. This report summarizes the activities of the working group on the verification of PASCAL in FY2015.

JAEA Reports

Guideline on a structural integrity assessment for reactor pressure vessel based on probabilistic fracture mechanics (Contract research)

Katsuyama, Jinya; Osakabe, Kazuya*; Uno, Shumpei; Li, Y.

JAEA-Research 2016-022, 40 Pages, 2017/02

JAEA-Research-2016-022.pdf:4.04MB

For reactor pressure vessels (RPVs) in the light water reactors, the fracture toughness decreases due to the neutron irradiation embrittlement with operating years. In Japan, to prevent RPVs from a nil-ductile fracture, deterministic fracture mechanics methods in accordance with the codes provided by the Japan Electric Association are performed for assessing the structural integrity of RPVs under the pressurized thermal shock (PTS) events by taking the neutron irradiation embrittlement into account. On the other hand, in recent years, probabilistic methodologies for PTS evaluation are introduced into regulations in Europe and the United States. For example, in the United States, a PTS screening criterion related to the reference temperature derived by the probabilistic method is stipulated. If the screening criterion is not satisfied, it is approved to perform the evaluation based on the probabilistic method by calculating numerical index such as through-wall crack frequency (TWCF). To reach the objectives that persons who have knowledge on the fracture mechanics can carry out the PFM analyses and obtain TWCF for a domestic RPVs by referring to this report, we develop the guideline on a structural integrity assessment method based on PFM by reflecting the latest knowledge and expertise.

Journal Articles

Benchmark analyses of probabilistic fracture mechanics for cast stainless steel pipe

Hojo, Kiminobu*; Hayashi, Shotaro*; Nishi, Wataru*; Kamaya, Masayuki*; Katsuyama, Jinya; Masaki, Koichi*; Nagai, Masaki*; Okamoto, Toshiki*; Takada, Yasukazu*; Yoshimura, Shinobu*

Mechanical Engineering Journal (Internet), 3(4), p.16-00083_1 - 16-00083_16, 2016/08

Performance demonstration certification of non-destructive inspection for cast stainless steel (CASS) has been planned but the target flaw depth to be detected has not been determined yet in Japan. The target flaw size is closely connected to the allowable flaw size which is determined by flaw evaluation of the rules on fitness-for-service. For rational mitigation of the acceptable flaw size, application of probabilistic fracture mechanics (PFM) is one of the useful countermeasures compared with deterministic approach. In this paper, benchmark problems for a CASS pipe were proposed with intention applying and verifying PFM codes. As the fracture modes, fatigue crack extension, plastic collapse and ductile crack initiation were assumed. Six organizations participated in the benchmark analysis and failure probabilities from them were compared. As a result the failure probability of each problem showed good agreement and the code for application of CASS issue has been verified.

Journal Articles

Failure probability analysis of aged piping using probabilistic fracture mechanics methodology considering seismic loads

Yamaguchi, Yoshihito; Katsuyama, Jinya; Li, Y.

Proceedings of 2016 ASME Pressure Vessels and Piping Conference (PVP 2016) (Internet), 10 Pages, 2016/07

Journal Articles

A Study on evaluation method of penetrate crack length for LBB assessment of fast reactor pipes

Wakai, Takashi; Machida, Hideo*; Sato, Kenichiro*

Nihon Kikai Gakkai M&M 2015 Zairyo Rikigaku Kanfarensu Koen Rombunshu (Internet), 3 Pages, 2015/11

This paper describes a through-wall crack length evaluation procedure applicable to Leak Before Break (LBB) assessment of Japan Sodium cooled Fast Reactor (JSFR) pipes made of Mod.9Cr-1Mo steel. In LBB assessment of JSFR pipes, it is required to calculate virtual through-wall crack length, though the crack growth is quite small under design condition. Generally, it is known that the through-wall crack length depends on loading condition, namely the load ratio between tensile and bending and that the length under pure bending load condition is largest. This study proposes a simplified method to evaluate the through-wall crack length both for axial and circumferential cracks as a function of load ratio and fatigue crack growth characteristics. Using the method, through-wall crack length can be predicted as far as we know the loading condition and material properties.

Journal Articles

J-integral evaluation method for a through wall crack in thin-walled large diameter pipes made of Mod.9Cr-1Mo steel

Wakai, Takashi; Machida, Hideo*; Arakawa, Manabu*; Sato, Kenichiro*

Nihon Kikai Gakkai 2015-Nendo Nenji Taikai Koen Rombunshu (DVD-ROM), 5 Pages, 2015/09

This paper describes a J-integral evaluation procedure applicable to unstable failure analysis for a circumferential through wall crack in a pipe. Japan Sodium cooled Fast Reactor (JSFR) pipes are made of Mod.9Cr-1Mo steel. The fracture toughness of the material is inferior to that of conventional austenitic stainless steels. In addition, JSFR pipe has small thickness and large diameter and displacement controlled load is predominant. Therefore, the load balance in such piping system changes by crack extension and 2 parameter method using J-integral is applicable to unstable failure analysis for the pipes under such conditions. As a J-integral evaluation method for circumferential through wall crack in a cylinder, EPRI has proposed a fully plastic solution method. However, the geometry of JSFR pipe and material characteristics of Mod.9Cr-1Mo steel exceed the applicable range of EPRI's method. Therefore, a series of elastic, elastoplastic and plastic finite element analyses (FEA) were performed for a pipe with a circumferential through-wall crack to establish a J-integral evaluation method applicable to such conditions. J-integrals obtained from the FEA were resolved into elastic, local plastic and fully plastic components. Each component was expressed as a function of analytical parameter, such as pipe geometries, crack size, material characteristics and so on. As a result, a simplified J-integral evaluation method was proposed.

Journal Articles

Requirements for fracture toughness to satisfy LBB behavior of a pipe made of high chromium steel

Machida, Hideo*; Wakai, Takashi; Sato, Kenichiro*

Nihon Kikai Gakkai 2015-Nendo Nenji Taikai Koen Rombunshu (DVD-ROM), 5 Pages, 2015/09

The volumetric test for piping in a sodium cooled fast reactor (SFR) is difficult from the poor accessibility. Detection of a crack, therefore, is difficult before its penetration of a pipe wall, an SFR has a strategy to detect sodium leakage from a through wall crack before fracture of a pipe. Plant safety is ensured by shutting down a plant as soon as possible to detect small quantity of sodium leakage even if a crack penetrates a pipe wall. Consequently, it is important to ensure establishment of leakage-before-break (LBB) in this strategy. Effects of fracture resistance curve on fracture strength of a cracked pipe made of high chromium steel (Mod. 9Cr-1Mo steel), which is one of the candidates for fast reactor piping material, are evaluated in this study; and requirements for fracture resistance curve to achieve the LBB were proposed.

JAEA Reports

User's manuals of probabilistic fracture mechanics codes PASCAL-SC and PASCAL-EQ

Ito, Hiroto*; Onizawa, Kunio; Shibata, Katsuyuki*

JAERI-Data/Code 2005-007, 118 Pages, 2005/09

JAERI-Data-Code-2005-007.pdf:5.23MB

As a part of the aging and structual integrity research for LWR components, new PFM (Probabilistic Fracture Mechanics) codes PASCAL-SC and PASCAL-EQ have been developed. These codes evaluate the failure probability of an aged welded joint by Monte Carlo method. PASCAL-SC treats Stress Corrosion Cracking (SCC) in piping, while PASCAL-EQ takes fatigue crack growth by seismic load into account. The development of these codes has been aimed to improve the accuracy and reliability of analysis by introducing new analysis and methodologies and algorithms considering the recent development in the fracture machanics methodologies and computer performance. The crack growth by an irregular stress due to seismic load in detail is considered in these codes. They also involves recent stress intensity factors and fracture criteria. In addition, a user's friendly operation of a GUI (Graphical User Interface) which generates input data, supports calculations and plots results is introduced. This report provides the user's manual and theoretical background of these codes.

58 (Records 1-20 displayed on this page)